News

Older News

Sydney's work on Metasurface-controlled holographic microcavities was published in ACS Photonics

Kazma's work on Few-Cycle Surface Plasmon Polaritons was published in Nano Letters

Joon-Suh's work on All-glass 100 mm Diameter Visible Metalens for Imaging the Cosmos was published in ACS Nano

Rui Jie's work on Time reversal differentiation of FDTD for photonic inverse design was published in ACS Photonics

Yun's work on High-power laser beam shaping using a metasurface for shock excitation and focusing at the microscale was published in Optics Express

Christina's work on Topologically protected optical polarization singularities in four-dimensional space was published in Science Advances

Our work on Extreme ultraviolet metalens by vacuum guiding was published in Science

Our work on Metasurface-stabilized optical microcavities was published in Nature Communications

Team

Nico Knefz (joint with Martin Schultze), [email protected]

Jakob Bancalari, external at Norwegian University of Science and Technology

Johannes Spendier, [email protected]

Lorenz Weiß, [email protected]

Andreas Weber, [email protected]

Diana Mori, external at Silicon Austia Labs

David Grafinger, [email protected]

Anna Karner, Google Scholar, [email protected]

Alexander Grossek, ORCID, [email protected]

Marcus Ossiander, Google Scholar, [email protected]

Alumni

Daniel Hipp (joint with Martin Schultze), [email protected]

Open Positions

Master Thesis: Exploration of XUV Photonic Integrated Circuits

Contact [email protected] anytime for details.

Funding

Affiliations and Collaborations

Research Highlights

Extreme Ultraviolet Metalens by Vacuum Guiding

M. Ossiander*, M. L. Meretska, H. K. Hampel, S. W. D. Lim, N. Knefz, T. Jauk, F. Capasso*, M. Schultze*

Science 380, pp. 59-63, 07.04.2023

10.1126/science.adg6881

Secondary Articles:

Physics Today Holey lens focuses extreme-UV radiation (2023)

ORF Science Metaoptik für allerkleinste Strukturen (2023)

Optica Optics and Photonics News A Metalens for the Extreme Ultraviolet (2023)

Extreme ultraviolet (EUV) radiation is at the heart of semiconductor lithography, modern material science, and attosecond metrology but a severe lack of optics halts progress. In this publication, as a Team from Harvard University and Graz University of Technology, we experimentally demonstrate metasurfaces as a superior way to handle EUV light. We achieve this by introducing a new nanoscopic phase-shifting technique - vacuum guiding - which exploits that holes in a membrane can have a considerably larger EUV refractive index than the surrounding material. We fabricated an EUV metalens and proved it focuses ultrashort light bursts generated via high-harmonic generation to a waist of only 700 nm. The work multiplies the current high-frequency limit of metasurfaces and, as the devices are phase-based, constitutes the first universal optics technology in the EUV.

Metasurface-Stabilized Optical Microcavities

M. Ossiander*, M. L. Meretska, S. Rourke, C. M. Spaegele, X. Yin, I. C. Benea-Chelmus, F. Capasso*

Nature Communications 14, 1114 (9pp), 27.02.2023

10.1038/s41467-023-36873-7

In this publication, we introduce microcavities generating holographic modes. By combining dielectric metasurfaces and distributed Bragg reflectors, we harness the design freedom of metasurfaces and the high reflectivity of Bragg reflectors. Therefore, we demonstrated metasurfaces as a highly effective way to concentrate light, i.e., to provide small mode volumes, high quality factors, and Purcell control. Contrary to classic cavity designs, our metasurface microcavities can stabilize designer modes and such, e.g., couple multiple quantum emitters or improve the efficiency of semiconductor lasers.

The speed limit of optoelectronics

M. Ossiander*, K. Golyari, K. Scharl, L. Lehnert, F. Siegrist, J. P. Bürger, D. Zimin, J.A. Gessner, M. Weidman, I. Floss, V. Smejkal, S. Donsa, C. Lemell, F. Libisch, N. Karpowicz, J. Burgdörfer, F. Krausz*, M. Schultze

Nature Communications 13, 1620 (9pp), 25.03.2022

10.1038/s41467-022-29252-1

Secondary Articles:

Physics World Quantum physics sets a speed limit for fastest possible optoelectronic switch (2022)

Der Standard Physikalisches Speedlimit für Computerchips liegt bei einem Petahertz (2022)

yahoo! Do your electronic gadgets have a speed limit? (2022)

This publication highlights today's x-ray attosecond science as a powerful tool for exploring future materials for communication and computation. We developed a technique to inject carriers in the conduction band of lithium fluoride using a 1 fs vacuum-ultraviolet light pulse and to coherently steer them via the electric field of a laser pulse. Albeit working with isolators, we could drive currents with a speed close to one petahertz. The method allows following excited electrons through the band structure and observing intra- and non-adiabatic interband transitions. As the technique records real currents, it connects microscopic effects to macroscopic signatures and directly measures optoelectronic material properties. Work was done at the Max Planck Institute of Quantum Optics and TU Wien.

Slow light nanocoatings for ultrashort pulse compression

M. Ossiander*, Y.-W. Huang, W.-T. Chen, Z. Wang, X. Yin, Y. A. Ibrahim, M. Schultze, F. Capasso*

Nature Communications 12, 6518 (8pp), 11.11.2021

10.1038/s41467-021-26920-6

Secondary Articles:

optics.org Harvard silicon coating counteracts light dispersion (2021)

Materials Today New silicon coating uses nanopillars to trap red light (2021)

The dispersion of transparent materials has aggravated using transmissive optics in ultrafast laser science for decades. This Harvard University/Graz University of Technology collaboration introduces nanostructured coatings that imprint negative group delay dispersion in the visible and near-infrared spectrum upon transmission. We experimentally demonstrated this in the spectral domain and proved the coatings compress elongated pulses in the time domain. As such, when applied to any ordinary transmissive optics, the coatings cancel their dispersion and prevent temporal pulse broadening, allowing their straightforward application to ultrashort laser pulses down to the few-cycle regime.

Absolute Timing of the Photoelectric Effect

M. Ossiander*, J. Riemensberger, S. Neppl, M. Mittermair, M. Schäffer, A. Duensing, M. Wagner, R. Heider, M. Wurzer, M. Gerl, M. Schnitzenbaumer. J.V. Barth, F. Libisch, C. Lemell, J. Burgdörfer, P. Feulner, R. Kienberger*

Nature 561, pp. 374-377, 19.09.2018

10.1038/s41586-018-0503-6

Secondary Articles:

physicsworld How long does the photoelectric effect take? (2018)

Frankfurter Allgemeine Zeitung Ein Milliardstel einer Milliardstel Sekunde (2018)

In a collaboration between the MPI of Quantum Optics, the Technical University of Munich, and the TU Wien, we developed a technique that enables recording the absolute timing of photoelectrons escaping from surfaces. This is equivalent to the phase of the photoelectrons and reveals, e.g., where they were born and how they move through a crystal. We showed that electrons can be freed from solids unexpectedly fast and demonstrated for the first time how to examine photoemission from adsorbates in the time domain. Material science can now gain previously unattainable information about the electron dynamics in designed surface-adsorbate-systems, employed, e.g., in organic solar cells and catalysis.

Attosecond correlation dynamics

M. Ossiander*, F. Siegrist, V. Shirvanyan, R. Pazourek, A. Sommer, T. Latka, A. Guggenmos, S. Nagele, J. Feist, J. Burgdörfer, R. Kienberger, M. Schultze*

Nature Physics 13, pp. 280-285, 07.11.2016

10.1038/nphys3941

Secondary Articles:

New Scientist Smallest sliver of time yet measured sees electrons fleeing atom (2016)

Spiegel Online 0,000000000000000007 Sekunden (2016)

Optica Optics and Photonics News Tracking Photoelectrons with Sub-Attosecond Precision (2016)

In a collaboration between the MPI of Quantum Optics, the University of Munich, the Technical University of Munich, and the TU Wien, we recorded the time delay between the absorption of a photon by a helium atom and the ejection of an electron for the first time. This allowed us to present four major results: 1) We created the first absolute time reference for attosecond spectroscopy. 2) We demonstrated how to retrieve the duration of fundamental processes with unprecedented sub-attosecond precision and accuracy. 3) The attained precision enabled breaking down the recorded times into universal and measurement-induced contributions and benchmarking theoretical models for these. 4) We demonstrated a contribution purely arising from the interaction of two electrons. This is the first realization of one of the promises of attosecond science: following the interaction of electrons on their natural timescale.

Publications

2024

Metasurface-Controlled Holographic Microcavities

S. Mason, M. L. Meretska, C. Spägele, M. Ossiander*, F. Capasso

ACS Photonics 2024, 15.02.2024 10.1021/acsphotonics.3c01479

Few-Cycle Surface Plasmon Polaritons

K. Komatsu*, Z. Pápa, T. Jauk, F. Bernecker, L. Tóth, F. Lackner, W. E. Ernst, H. Ditlbacher, J. R. Krenn, M. Ossiander, P. Dombi, M. Schultze*

Nano Lett. 2024, 12.02.2024 10.1021/acs.nanolett.3c04991

All-glass 100 mm Diameter Visible Metalens for Imaging the Cosmos

J.-S. Park, S. W. D. Lim, A. Amirzhan, H. Kang, K. Karrfalt, D. Kim, J. Leger, A. M. Urbas, M. Ossiander, Z. Li, F. Capasso

ACS Nano 2024, 18, pp. 3187-3198, 17.01.2024 10.1021/acsnano.3c09462

2023

Minimal memory differentiable FDTD for photonic inverse design

R. J. Tang*, S. W. D. Lim*, M. Ossiander, X. Yin, F. Capasso

ACS Photonics, 14.11.2023 10.1021/acsphotonics.3c00694

Attosecond dynamics of photoemission over a wide photon energy range

C. A. Schröder*, J. Riemensberger, R. Kuzian, M. Ossiander, D. Potamianos, , F. Allegretti, L. Bignardi, S. Lizzit, A. Akil, A. Cavalieri, D. Menzel, S. Neppl, R. Ernstorfer, J. Braun, H. Ebert, J. Minar, W. Helml, M. Jobst, M. Gerl, E. Bothschafter, A. Kim, K. Hütten, U. Kleineberg, M. Schnitzenbaumer, J. Barth, P. Feulner, E. Krasovskii, R. Kienberger*

preprint, 30.10.2023 10.21203/rs.3.rs-3024896/v1

High-power laser beam shaping using a metasurface for shock excitation and focusing at the microscale

Y. Kai, J. Lem, M. Ossiander, M. L. Meretska, V. Sokurenko, S. E. Kooi, F. Capasso, K. A. Nelson, T. Pezeril

Optics express 31, pp. 31308-31315, 07.9.2023 10.1364/OE.487894

Topologically protected four-dimensional optical singularities

C. M. Spaegele*, M. Tamagnone*, S. W. D. Lim, M. Ossiander, M. L. Meretska, F. Capasso*

Science Advances 9, eadh0369, 16.6.2023 10.1126/sciadv.adh0369

Extreme Ultraviolet Metalens by Vacuum Guiding

M. Ossiander*, M. L. Meretska, H. K. Hampel, S. W. D. Lim, N. Knefz, T. Jauk, F. Capasso*, M. Schultze*

Science 380, pp. 59-63, 07.04.2023 10.1126/science.adg6881

Metasurface-Stabilized Optical Microcavities

M. Ossiander*, M. L. Meretska, S. Rourke, C. M. Spaegele, X. Yin, I. C. Benea-Chelmus, F. Capasso*

Nature Communications 14, 1114 (9pp), 27.02.2023 10.1038/s41467-023-36873-7

2022

Measurements of the magneto-optical properties of thin-film EuS at room temerature in the visible spectrum

M. L. Meretska, F. H. B. Somhorst, M. Ossiander, Y. Hou, J. Moodera, F. Capasso

Applied Physics Letters 120, 251103, 20.06.2022 10.1063/5.0090533

The speed limit of optoelectronics

M. Ossiander*, K. Golyari, K. Scharl, L. Lehnert, F. Siegrist, J. P. Bürger, D. Zimin, J.A. Gessner, M. Weidman, I. Floss, V. Smejkal, S. Donsa, C. Lemell, F. Libisch, N. Karpowicz, J. Burgdörfer, F. Krausz*, M. Schultze

Nature Communications 13, 1620 (9pp), 25.03.2022 10.1038/s41467-022-29252-1

2021

Slow light nanocoatings for ultrashort pulse compression

M. Ossiander*, Y.-W. Huang, W.-T. Chen, Z. Wang, X. Yin, Y. A. Ibrahim, M. Schultze, F. Capasso*

Nature Communications 12, 6518 (8pp), 11.11.2021 10.1038/s41467-021-26920-6

Multifunctional wide-angle optics and lasing based on supercell metasurfaces

C. Spägele, M. Tamagnone*, D. Kazakov, M. Ossiander, M. Piccardo, F. Capasso*

Nature Communications 12, 3787 (10pp), 18.06.2021 10.1038/s41467-021-24071-2

2020

Broadband phase-shifting mirrors for ultrafast lasers

M. Trubetskov, T. Amotchkina*, L. Lehnert, J. Sancho-Parramon, K. Golyari, V. Janicki, M. Ossiander, M. Schultze, V. Pervak

Applied Optics 59.5, pp. A123-A127, 10.02.2020 10.1364/AO.59.00A123

2019

Megahertz-compatible angular streaking with few-femtosecond resolution at X-ray free-electron lasers

R. Heider, M. S. Wagner, N. Hartmann, M. Ilchen, J. Buck, G. Hartmann, V. Shirvanyan, A. O. Lindahl, C. Benko, J. Grünert, J. Krzywinski, J. Liu, M. Ossiander, A. A. Lutman, A. Marinelli, T. Maxwell, A. A. Miahnahri, S. P. Moeller, M. Planas, J. Robinson, J. Viefhaus, T. Feurer, R. Kienberger, R. N. Coffee, W. Helml*

Phys. Rev. A 100, 053420, 25.11.2019 10.1103/PhysRevA.100.053420

Attosecond Dynamics of sp-band Photo-Excitation

J. Riemensberger*, S. Neppl, D. Potamianos, M. Schäffer, M. Schnitzenbaumer, M. Ossiander, C. Schröder, A. Guggenmos, U. Kleineberg, D. Menzel, F. Allegretti, J. V. Barth, R. Kienberger, P. Feulner, A. G. Borisov, P. M. Echenique, A. K. Kazansky

Phys. Rev. Lett. 123, 176801, 21.10.2019 10.1103/PhysRevLett.123.176801

Light-wave dynamic control of magnetism

F. Siegrist, J. A. Gessner, M. Ossiander, C. Denker, Y. Chang, M. C. Schröder, A. Guggenmos, Y. Cui, J. Walowski, U. Martens, J. K. Dewhurst, U. Kleineberg, M. Münzenberg, S. Sharma, M. Schultze*

Nature 571, pp. 240-244, 26.06.2019 10.1038/s41586-019-1333-x

Few-Femtosecond Wave Packet Revivals in Ozone

T. Latka*, V. Shirvanyan, M. Ossiander, O. Razskazovskaya, A. Guggenmos, M. Jobst, M. Fieß, S. Holzner, A. Sommer, M. Schultze, C. Jakubeit, J. Riemensberger, B. Bernhardt, W. Helml, F. Gatti, B. Lasorne, D. Lauvergnat, P. Decleva, G. J. Halász, Á. Vibók, R. Kienberger*

Phys. Rev. A 99, 063405 (9pp), 10.06.2019 10.1103/PhysRevA.99.063405

2018

Absolute Timing of the Photoelectric Effect

M. Ossiander*, J. Riemensberger, S. Neppl, M. Mittermair, M. Schäffer, A. Duensing, M. Wagner, R. Heider, M. Wurzer, M. Gerl, M. Schnitzenbaumer. J.V. Barth, F. Libisch, C. Lemell, J. Burgdörfer, P. Feulner, R. Kienberger*

Nature 561, pp. 374-377, 19.09.2018 10.1038/s41586-018-0503-6

2017

Carrier frequency tuning of few-cycle light pulses by a broadband attenuating mirror

O. Razskazovskaya, M. Ossiander, F. Siegrist, V. Pervak, M. Schultze

Applied Optics 56.32, pp. 8978-8982, 08.11.2017 10.1364/AO.56.008978

2016

Attosecond correlation dynamics

M. Ossiander*, F. Siegrist, V. Shirvanyan, R. Pazourek, A. Sommer, T. Latka, A. Guggenmos, S. Nagele, J. Feist, J. Burgdörfer, R. Kienberger, M. Schultze*

Nature Physics 13, pp. 280-285, 07.11.2016 10.1038/nphys3941

Attosecond photoelectron streaking with enhanced energy resolution for small-band-gap materials

A. Guggenmos, A. Akil, M. Ossiander, M. Schäffer, A. M. Azzeer, G. Böhm, M.-C. Amann, R. Kienberger, M. Schultze, U. Kleineberg

Optics Letters 41.16, pp. 3714-3717, 03.08.2016 10.1364/OL.41.003714

2015

Chromium/Scandium multilayer mirrors for attosecond pulses at 145 eV

A. Guggenmos*, M. Jobst, M. Ossiander, S. Radünz, J. Riemensberger, M. Schäffer, A. Akil, C. Jakubeit, P. Böhm, S. Noever, B. Nickel, R. Kienberger, F. Krausz, U. Kleineberg

Optics Letters 40.12, pp. 2846-2849, 11.06.2015 10.1364/OL.40.002846

2014

Optical study of lithographically defined, subwavelength plasmonic wires and their coupling to embedded quantum emitters

G. Bracher*, K. Schraml, M. Ossiander, S. Frederick, J. J. Finley, M. Kaniber

Nanotechnology 25.7, 075203 (6pp), 21.01.2014 10.1088/0957-4484/25/7/075203

2012

Carrier-envelope-phase-stable, 1.2 mJ, 1.5 cycle laser pulses at 2.1 um

Y. Deng*, A. Schwarz, H. Fattahi, M. Ueffing, X. Gu, M. Ossiander, T. Metzger, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, G. Marcus, F. Krausz, R. Kienberger, N. Karpowicz

Optics Letters 37.23, pp. 4973-4975, 29.11.2012 10.1364/OL.37.004973

Active stabilization for optically synchronized optical parametric chirped pulse amplification

A. Schwarz*, M. Ueffing, Y. Deng, X. Gu, H. Fattahi, T. Metzger, M. Ossiander, F. Krausz, R. Kienberger

Optics Express 20.5, pp. 5557-5565, 22.2.2012 10.1364/OE.20.005557

Impressum und Datenschutzerklärung

Informationspflicht laut §5 E-Commerce Gesetz und Offenlegungspflicht laut §25 Mediengesetz

Marcus Ossiander

Petersgasse 16

8010 Graz

Österreich

Tel: +43 (0)316/873 - 8666

E-Mail: [email protected]

Datenschutzerklärung

Verantwortlich im Sinne der DSGVO ist:
Marcus Ossiander, Petersgasse 16, 8010 Graz, Österreich, Tel: +43 (0)316/873 - 8666, E-Mail: [email protected]

Sollten Sie per E-Mail mit uns Kontakt aufnehmen, werden die mitgeteilten Daten von uns gespeichert, um Ihr Anliegen zu bearbeiten. Zu den verarbeiteten Daten zählen: Ihr Name, Ihre E-Mail-Adresse, Ihre E-Mail-Inhalte. Wir werden die Daten löschen, sobald die Speicherung nicht mehr erforderlich ist oder die Verarbeitung einschränken, falls gesetzliche Aufbewahrungspflichten bestehen.

Betroffenenrechte
Sie haben als betroffene Person, das Recht auf Auskunft, das Recht auf Berichtigung oder Löschung, das Recht auf Einschränkung der Verarbeitung und das Recht auf Widerspruch gegen die Verarbeitung Ihrer Daten. Sofern Sie uns eine Einwilligung erteilt haben, können Sie diese jederzeit mit Wirkung für die Zukunft widerrufen. Bitte richten Sie Ihren Widerspruch formlos an den Verantwortlichen (siehe oben). Darüber hinaus haben Sie das Recht auf Datenübertragbarkeit. Sie haben weiter das Recht, sich bei einer Aufsichtsbehörde über die Verarbeitung zu beschweren (z.B. unter https://www.dsb.gv.at/Eingabeformular-online/Eingabeformular-online.html).

Cloudflare
Wir nutzen das Website-Hosting und Content Delivery Network von Cloudflare (Cloudflare Germany GmbH, Rosental 7, c/o Mindspace, 80331 München, Deutschland). Cloudflare ist nach dem EU-US Data Privacy Framework (Angemessenheitsbeschluss der Europäischen Komission vom 10.7.2023, https://commission.europa.eu/document/fa09cbad-dd7d-4684-ae60-be03fcb0fddf_en) zertifiziert: https://www.dataprivacyframework.gov/list. Für diesen Zweck können personenbezogene Daten in Server-Logfiles von Cloudflare verarbeitet werden. Dies entspricht unserem berechtigten Interesse (Art. 6 Abs. 1 lit. f DSGVO), da wir selbst kein Website-Hosting und Content Delivery Network betreiben können und es die Sicherheit und die Auslieferungsgeschwindigkeit unserer Website erhöht. Ihre personenbezogenen Daten werden von Cloudflare nur so lange gespeichert, wie es für die beschriebenen Zwecke erforderlich ist.
Sie haben das Recht der Verarbeitung zu widersprechen. Weitere Informationen zu Widerspruchs- und Beseitigungsmöglichkeiten gegenüber Cloudflare finden Sie unter: www.cloudflare.com/resources/assets/slt3lc6tev37/1M1j5uuFDuLTYiZJJDPBag/770322411bcac7f8bcc350e31b1e8319/Customer_DPA_v.3_1_-_de-de_19_Oct_2020.pdf
Informationen zur Datenverarbeitung bei Cloudflare finden Sie unter: https://www.cloudflare.com/de-de/trust-hub/gdpr/
Die Datenschutzerklärung von Cloudflare finden Sie unter: https://www.cloudflare.com/privacypolicy/.